

Development of ZnS Lenses for FIR Cameras — by Tomoyuki Ueno, Masato Hasegawa, Masashi Yoshimura, Hiroshi Okada, Takao Nishioka, Kanji Teraoka, Akihito Fujii and Shigeru Nakayama — Recently, demand for farinfrared ray (FIR) cameras, which visualize objects without any light source, has been increasing for security purposes and other applications such as night-vision devices installed in vehicles. To meet the demand, the development of affordable lenses is desired and Zinc sulfide (ZnS) can be one of the solutions. We have currently realized a low-cost ZnS lens by a newly developed precise mold-forming process utilizing a powder metallurgical technology, in which ZnS powder is sintered and molded directly into a lens shape at the same time. The ZnS lens has excellent optical characteristics such as high-purity FIR transmission of 8 to 12 µm wavelength, which is equivalent to chemical vapor deposition (CVD) products; optical surface roughness of less than 0.020 µm on average, and form errors within 3 µm. In addition, a ZnS lens has a distinguished modulation transfer function (MTF) performance, which enables clear images in every detail to be taken. Thus, a ZnS lens is suitable for FIR optics.

Keywords: far-infrared ray camera, Zinc sulfide lens, net-shaped molding process, low cost, MTF

1. 緒 言

遠赤外線(波長8~12μm)カメラは、対象の表面温度 を検知し、更に光源を必要とせずに対象を可視化できるた め、防犯用途での夜間監視や、自動車用途での歩行者保護 を目的としたナイトビジョン^{(1)、(2)}及び、産業用途や家電用 途など多用途で用いられている。近年、その需要は年率約 10%以上で堅調に増加している⁽³⁾。

この遠赤外線カメラの市販価格は非常に高価であり、今 後も多用途で普及し続けるためには、その低価格化が必須 である。それには、遠赤外線カメラを構成する部品の中で、 特に低価格なレンズの開発が強く望まれている。現在、レ ンズには、遠赤外線に対して高い屈折率や透過率を持つゲ ルマニウムが主流に用いられている。しかし、ゲルマニウ ムは希少金属で供給量に制限がある点と、レンズ形状に仕 上げるには研削・研磨加工や超精密切削加工(以下、DPT: Diamond Point Turning)等の機械加工法の適用が必要 であるという点から、非常に高価である。そのため、レン ズを低価格化させる手法としてカルコゲナイドガラス^{(4)、(5)} 等の適用が提案されているが、ゲルマニウムを含有する等 の点から低価格化は不十分である。

筆者らは、ゲルマニウムに代わる低価格かつ優れた光学 性能を持つ遠赤外線カメラ用途のレンズとして、**写真1**に 示す硫化亜鉛(以下ZnS: Zinc Sulfide)製のレンズを開 発した。本報では、粉末冶金法を活用して作製したZnS レンズの作製プロセス及び、その特性や性能に関して詳述 する。

写真1 開発したZnSレンズ

2. 粉末冶金法を用いた ZnS レンズの開発

従来、ZnSは気相合成(CVD: Chemical Vapor Deposition)を用いて高純度な緻密体が作製されてきたが、 合成装置や原材料にコストがかかるため、普及用途では実 用的ではない。筆者らは、共沈法等の粉末合成法で安価に 作製可能なZnS粉末に着目し、粉末冶金法を活用して低コ ストでレンズを作製するプロセスの開発に着手した。ここ での課題は、ZnS粉末を高純度かつ緻密に焼結する点と、 研削・研磨といった高コストな機械加工法を使用せずに、 焼結後のZnSレンズ表面を光学鏡面かつ高精度に設計形状

へと仕上げる点である。

上記の課題に対して筆者らは、ガラスレンズの製法に用 いられるネットシェイプ・モールド成形法を、図1に示す ように粉末原料に対して初めて適用した。本プロセスで最 も重要なモールド成形プロセスの模式図を図2に示す。こ れは、高精度に仕上げた型を用いて、ZnS粉末の焼結と同 時に設計レンズ形状に直接仕上げる画期的なプロセスであ る。ここで、原料となるZnS粉末の粒径や純度の管理や、 ZnS粉末を焼結する際の温度や加圧力といった条件を適切 に制御することにより、従来は十数時間かかる焼結時間を、 大量生産が可能となる短時間で、相対密度99.8%以上の 緻密体に焼結することができる。得られたZnSレンズ表面 の組織をSEMで観察した結果を写真2に示す。遠赤外線の 散乱要因となるサイズの気孔や不純物層がない緻密な組織 であることが確認できる。

モールド成形プロセスで作製したZnSレンズの機械的・ 熱的特性を**表1**に示す。作製したZnSレンズは、当社が従 来より開発・実用化⁽⁶⁾しているCVD 品と同等の特性が得 られている。

図1 ZnS レンズの作製プロセス

図2 モールド成形プロセスの模式図

写真2 ZnS レンズ表面の組織

表	1	機械的特性

項目	単 位	モールド成形法	CVD 法
三点曲げ強度	MPa	86	98
ヌープ硬度		231	230
ヤング率	GPa	86	75
熱膨張係数	× 10⁻6/K	6.7	6.7
熱伝導率	W∕(m • K)	17	17

作製した ZnS レンズの表面粗さを非接触表面形状測定機 (Zygo Corporation: New View)を使用して測定した結 果を図3(a)に示す。この際、転写性も評価するため型の 表面粗さの測定を行った結果を図3(b)に示す。型表面の 最大粗さRy: 0.025μ m, 平均粗さRa: 0.003μ mに対し て、ZnSレンズ表面の最大粗さRy: 0.036μ m, 平均粗さ Ra: 0.003μ mである。この結果から、型の表面粗さは ZnS レンズへ良好に転写することが可能で、ZnS レンズ の表面は平均粗さ Ra $\leq 0.020\mu$ m 以下の光学鏡面を有する ことができる。

3. ZnS レンズ素材の分光特性

モールド成形プロセスを用いたZnS レンズの、遠赤外線 透過率(厚み:3mm)を測定した結果を表2(a)に示す。 測定にはフーリエ変換赤外分光光度計(日本分光㈱: FT/IR-6100)を使用した。遠赤外線カメラ用途のレンズ として重要な特性である波長8~12µm範囲での平均透過 率は71%で、CVD品の72%と比べて同等の特性を有して いる。この結果より、筆者らが開発したモールド成形プロ セスは、短時間でZnS粉末からZnSレンズを作製可能なプ ロセスであると同時に、優れた遠赤外線透過率を有する ZnSレンズを作製することが可能である。更に、ZnSレン ズ表面に反射防止(AR:Anti-reflection)コーティングを 成膜した際の透過率を表2(b)に示す。この成膜により遠 赤外線領域で透過率が向上しており、8~12µm平均透過 率は91%である。

図3 ZnS レンズと型の表面粗さ

波長	透過率	s (%)
(µm)	モールド成形法	CVD法
4	63	64
5	68	67
6	71	58
7	72	71
8	73	73
9	74	74
10	74	74
11	67	67
12	65	68
13	54	54
14	35	36

表2(a) 遠赤外線透過率特性

(測定厚み: 3mm)

表2(b)	AR ⊐−	ト後の遠赤外線透過率特性
-------	-------	--------------

波長	透過率(%)	波長	透過率(%)
(µm)	ARコート品	(µm)	ARコート品
4	76	10	95
5	78	11	85
6	92	12	79
7	94	13	60
8	94	14	35
9	95	(測定厚み	3mm、両面ARコート)

次に、ZnSレンズの屈折率を上記の装置を用いて測定した結果を、CVD品の値と共に図4に示す。作製したZnS レンズの屈折率は、CVD 品と同一であることがわかる。 また、波長8~12μm範囲での分散率の指標であるアッベ 数*1は22.7であり、こちらも同一である。

4. ZnS レンズの形状精度

4-1 高精度なZnSレンズの開発 モールド成形プ ロセスでは、球面や非球面及び回折面(以下、DOE: Diffractive Optical Element)*2といった光学的曲面形状 を有するZnSレンズを成形することが可能である。この際、 ZnSレンズは粉末から作製されている点、及び一般的に モールド成形法が適用されているガラスレンズと比較する と高温・高圧下で成形を行う必要がある点から、レンズ形 状を高精度化する設計手法の確立が必要である。

レンズの形状は、ZnSと型材質との熱膨張差や、焼結時 の加圧力による弾性変形等の影響を受け、ミクロンオー ダーの形状誤差(以下、PV: Peak to Valley)が生じる。 この設計レンズ形状に対するPVの許容量は、光学シミュ レーション上の公差解析法を用いて算出する必要がある。 図5に、画角:21°、焦点距離:19mmで設計した光学系 における MTF特性*3に関して、軸上MTF値とレンズの PVとの関係を示す。レンズのPVが大きくなるに従い、 MTF値の低下が顕著となる傾向がわかる。軸上MTF値の 低下量が、設計値の10%以内であれば実用的に機械加工 法で作製したレンズと同等の性能が得られるため、モール ド成形で作製した ZnSレンズの形状精度の目標値を PV≤3µmと設定した。

レンズ形状の高精度化には、作製したレンズ形状を測定 し、設計形状との誤差量を型へフィードバックし、型の修 正加工を行い、目標とする精度を得るまで上記サイクルを 繰り返す手法が提案されている⁽⁷⁾。しかし、この手法では

図6 MTF 特性とレンズ PV の関係

型の修正加工が複数回も必要となるため、効率が悪化しコ ストが増大するという課題がある。そこで筆者らは、形状 誤差の因子である熱膨張差や弾性変形量の影響を考慮した モールド成形用の型を作製することで、レンズ作製の効率 化と高精度化を図った。この原理を以下に示す。式(1) に示す非球面レンズ形状の公式に対して、各非球面係数に ZnS と型材質との熱膨張差を考慮した式(2)を用いるこ とで、熱膨張差に起因する形状誤差の影響を大幅に低減す ることができる。

$$Z = \frac{\mathbf{C} \cdot \mathbf{r}^2}{\left(1 + \sqrt{1 - (1 + \mathbf{K}) \mathbf{C}^2 \cdot \mathbf{r}^2}\right)} + \sum \mathbf{A}_i \cdot \mathbf{r}^i \qquad \cdots \cdots \cdots \cdots (1)$$

$$Z = \frac{\mathbf{C} \cdot \mathbf{r}^2}{\left(1 + \sqrt{1 - (1 + \mathbf{K}) \mathbf{C}^2 \cdot \mathbf{r}^2}\right)} + \sum \mathbf{A}_i \cdot \mathbf{r}^i + \sum \mathbf{B}_i \cdot \mathbf{r}^i \quad \cdots \quad (2)$$

$$C = \frac{1}{R} \qquad (3)$$

Ζ	:	非球面形状の高さ座標	Κ	:	円錐定数
r	:	非球面形状の径方向座標	A_{i}	:	非球面定数
R	:	曲率半径	\mathbf{B}_{i}	:	熱膨張差定数

一方、加圧力による弾性変形量に関しては、ZnS及び型 材質のモールド成形温度におけるヤング率やポアソン比、 レンズ形状や型への加圧力等の様々な因子を考慮する必要 がある。筆者らは、CAE解析を活用して弾性変形量を計算 し、得られた結果を式(2)へ反映することで、弾性変形 による誤差を大幅に低減した式(4)を導いた。

$$Z = \frac{\mathbf{C} \cdot \mathbf{r}^2}{\left(1 + \sqrt{1 - (1 + \mathbf{K}) \mathbf{C}^2 \cdot \mathbf{r}^2}\right)} + \sum \mathbf{A}_i \cdot \mathbf{r}^i + \sum \mathbf{B}_i \cdot \mathbf{r}^i + \sum \mathbf{C}_i \cdot \mathbf{r}^i \quad \cdots \quad (4)$$

 C_i : 弾性変形定数

(4) 式に基づいた型を使用して、モールド成形プロセス にて作製した非球面形状のZnSレンズ(レンズ有効径: \emptyset 20mm)のPVを図6(a)に示す。レンズ形状の測定には 非接触三次元測定装置(三鷹光器㈱:NH-3SP)を使用し た。この結果から、ZnSレンズのPV=0.803 μ mと目標 PV \leq 3 μ mを達成でき、更に型形状の修正加工を1回行う ことで、図6(b)に示すようにPV:0.194 μ mと機械加工法 と同等の非常に高精度な非球面レンズを作製することに成 功した。

4-2 回折 (DOE) 形状レンズの開発 表3⁽⁸⁾に示す ように、ZnSレンズはゲルマニウムに比べて屈折率が低い ため素材での遠赤外線の反射損失が少なく、かつ屈折率の 温度依存性(dn/dt)が低いという利点を持つ。一方、 アッベ数が小さいため、高解像度用途では回折現象を利用 した色収差**の低減が必要であり、DOE 形状を有する ZnSレンズを作製する必要がある。DOE 形状 ZnSレンズ の効果を、非球面形状 ZnSレンズとの対比にて**表4**に示す。 画角:18°,焦点距離:12.6mmで設計した ZnS単レンズ のMTF特性は、DOE 形状 ZnSレンズの方が高く、より高 解像度用途へ適用することが可能である。

ZnSのDOE形状は、(5)式に示す波長10µmにおける 屈折率から算出することができ、高さ約8.3µmの微小段差 をレンズ表面に加える必要がある。

表3 遠赤外線透過材料の物性値

項目	硫化亜鉛 (ZnS)	ゲルマニウム
屈折率@10µm	2.200	4.003
アッベ数 (8-12µm)	22.7	942
dn/dt [K-1]	4.1 × 10 ⁻⁵	40.0 × 10 ⁻⁵

表4 ZnS 単レンズの MTF 特性

百日	MTF特性(10 lp/mm)		
	画角:0°	画角:6.8°	画角:9°
非球面形状	24 %	26 %	20 %
DOE形状	70 %	71 %	66 %

$$D_{h} = \frac{\lambda_{10\mu m}}{(n_{10\mu m} - 1)} \qquad (5)$$

D_h : DOE 溝高さ

λ_{10μm}: 波長

 $\mathbf{n}_{_{10\mu m}}$: ZnSの波長10 μm における屈折率

一般的にDOE 形状をレンズ面に作製する場合、鋭利な 先端を有する単結晶ダイヤモンドバイトを用いたDPTによ る機械加工法を適用し、形状ロス (DOE形状の幅)が1~ 3µm以下の鋭利なDOE形状を作製する手法がある⁽⁹⁾。し かし、ZnS粉末のモールド成形プロセスにおいては、微小 段差への粉末の充填性やエッジ部分の欠損抑制等の粉体の 塑性流動を的確に制御する必要がある。これらの課題に対 して、光学特性に影響を与えない微小な曲率を微小段差の エッジ部分へ付与することで、粉末の流動性を高めて充填 性を向上させると共に、耐欠損性も向上させる手法を開発 した。作製したDOE形状の外観とその詳細を**写真3**にそれ ぞれ示す。DOE形状には欠損がなく、かつ形状ロスは 5µm以下と機械加工法に近い鋭利な形状が確認できる。

次に、作製したDOE形状ZnSレンズのPVを図7に、また解析を用いてDOE形状を除去したベースとなる非球面

写真3 ZnS レンズの DOE 形状

図8 解析を用いて DOE 形状を除去した ZnS レンズの PV

形状のPVを図8にそれぞれ示す。図7より、光学有効径内 の全面においてDOE形状が均一かつ鋭利に作製されてい ることが確認でき、更に図8よりDOE形状を有するZnS レンズにおいてもPV: 0.239μmと高精度な形状が作製可 能である。

5. ZnS レンズを用いた遠赤外線カメラ性能

5-1 MTF特性 MTF特性はレンズを通じて結像した像の解像度を表す指標である。光学設計値に対してレンズの形状、厚み、偏心等の誤差の影響を受けて特性が低下するため、レンズの総合的な性能を表す指標として特に重要である。測定には OPT-IR (Optikos Corporation: LWIR OpTest Lens MTF System.)を使用した。

視野角21°、焦点距離19mmで設計した光学系のMTF 特性の設計値を図9に示す。設計に基づきモールド成形プ ロセスで作製したZnSレンズを、複数枚組み合わせたユ ニットの各画角におけるMTF特性及び、機械加工法で作 製したZnSレンズ・ユニットの特性を設計値との比較にて 表5にそれぞれ示す。モールド成形プロセスを用いて作製 したZnSレンズ・ユニットのMTF特性は、設計値に対し て良く一致しており、かつ機械加工法を用いたZnSレン ズ・ユニットと比較して同程度のMTF特性を得ることが 可能である。

図9	設計	MTF値	晢
<u> </u>			_

表5	MTF 特′	性
----	--------	---

百日	MTF 特性 (20 lp/mm)		
山 山 山	画角:0°	画角:6°	画角: 10.5 °
設計値	58 %	54 %	38 %
機械加工法	58 %	53 %	37 %
モールド成形法	54%	51%	36 %

5-2 遠赤外線カメラ映像 モールド成形プロセス で作製した ZnS レンズ・ユニットを遠赤外線カメラにセッ トして撮影した画像を写真4(a)に、機械加工法で作製し た ZnS レンズ・ユニットを用いた画像を写真4(b)にそれ ぞれ示す。双方の画像において、細部における鮮明度や明 るさに関して同等の画質が得られており、特に人物の体温 に相当する熱源を鮮明に撮影可能である。この結果から、 モールド成形プロセスで作製した ZnS レンズは、高解像度 が要求される遠赤外線カメラ用途のレンズとして適用が可 能である。

(a) モールド成形ZnSレンズ使用

(b) 機械加工ZnSレンズ使用

写真4 遠赤外線カメラ撮影像

6. 結 言

ZnS 粉末を出発原料として、粉末冶金法を活用したモー ルド成形プロセスを適用し、低コストかつ高精度な遠赤外 線カメラ用途のZnSレンズを開発した。ZnSレンズは、高 精度な球面、非球面、DOE 面の各曲面形状に作製すること が可能であり、表面粗さRa: 0.020µm以下の光学鏡面と、 形状誤差PV: 3µm以下の高い精度を有している。

開発した ZnS レンズは、CVD で作製した ZnS と同程度 の遠赤外線透過率(8~12µm 平均値)と、屈折率を有し ている。更に、機械加工法で作製した ZnS レンズと同程度 の MTF 特性を有しており、目視で同等の遠赤外線カメラ 画像を撮影することが可能である。

以上の結果から、モールド成形プロセスで開発したZnS レンズは低コストで、かつ鮮明な画像を撮影することが可 能であり、従来のゲルマニウムやカルコゲナイドガラス製 のレンズからの代替が可能である。

 Zygo、New View は、米国 Zygo Corporationの米国及びその他の国に おける商標または登録商標です。

用語集一

※1 アッベ数

波長分散を表す分散率の逆数。値が大きいほど色収差が少 ないレンズ材質である。収差とは、レンズを通過した光束 が1点に結像しない現象のこと。

※2 回折面

光の回折現象を活用して、光線の挙動を制御する光学素子。 ここでは、レンズ表面に同心円状の微細段差を施すことで、 色収差の補正等に用いられる。

※3 MTF 特性

レンズの解像度を表す指標。値が高いほど鮮明な像が得ら れる。

※4 色収差

レンズの波長による屈折率の差異が原因で発生する収差の こと。

- (1) 齋藤裕昭 他、「遠赤外線カメラを用いた夜間歩行者検知システムの開発」、SEI Technical Review Vol.169、88-92 (2006)
- (2) 齋藤裕昭 他、「遠赤外線カメラを用いた歩行者検知システムの開発」、 SEI Technical Reviw Vol.171、80-85 (2007)
- (3)株式会社富士経済、「2008 画像処理システム市場の現状と将来展望」、 217-221 (2008)

- (4) H.X.Zhang 他、「Production of complex chalcogenide glass optics by molding for thermal imaging」、Journal of Non-Crystalline Solids 326&327、519-523 (2003)
- (5) Y.Guimond 他、「Molded GASIR® infrared optics for automotive applications」
- (6) 長谷川幹人他、「赤外線透光性緻密質ZnS焼結体の光学特性」、SEI Technical Review Vol.160、73-80 (2002)
- (7) 庄司克雄他、「超精密加工と非球面加工」株式会社エヌ・ティー・エス、372-377 (2004)
- (8) J.Franks 他、「Optical and thermo mechanical properties of infrared glasses」、SPIE Vol.6940 (2008)
- (9) J.Yan 他、「Micro Grooving on Single-crystal Germanium for Infrared Fresnel Lenses」、Journal of Micromechanics and Microengineering、1925-1931 (2005)

執筆	老-	
上野	, 友之 [*]	: エレクトロニクス・材料研究所 アドバンストマテリアル研究部 機能性セラミックスの材料・プロセス 開発に従事
長谷川	幹人	:エレクトロニクス・材料研究所
		アドバンストマテリアル研究部 主査
吉村	雅司	:エレクトロニクス・材料研究所
		アドバンストマテリアル研究部(主席)工学博士
岡田	浩	:エレクトロニクス・材料研究所
		アドバンストマテリアル研究部(主席)
西岡	隆夫	:エレクトロニクス・材料研究所
		アドバンストマテリアル研究部 部長 工学博士
寺岡	寛二	:ハイブリッド製品事業部 技術部 主査
藤井	明人	:ハイブリッド製品事業部 技術部 主席
中山	茂	:ハイブリッド製品事業部 技術部 グループ長

* 主執筆者